Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stroke ; 55(4): 1015-1024, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38275117

RESUMO

BACKGROUND: The dynamics of blood clot (combination of Hb [hemoglobin], fibrin, and a higher concentration of aggregated red blood cells) formation within the hematoma of an intracerebral hemorrhage is not well understood. A quantitative neuroimaging method of localized coagulated blood volume/distribution within the hematoma might improve clinical decision-making. METHODS: The deoxyhemoglobin of aggregated red blood cells within extravasated blood exhibits a higher magnetic susceptibility due to unpaired heme iron electrons. We propose that coagulated blood, with higher aggregated red blood cell content, will exhibit (1) a higher positive susceptibility than noncoagulated blood and (2) increase in fibrin polymerization-restricted localized diffusion, which can be measured noninvasively using quantitative susceptibility mapping and diffusion tensor imaging. In this serial magnetic resonance imaging study, we enrolled 24 patients with acute intracerebral hemorrhage between October 2021 to May 2022 at a stroke center. Patients were 30 to 70 years of age and had a hematoma volume >15 cm3 and National Institutes of Health Stroke Scale score >1. The patients underwent imaging 3×: within 12 to 24 (T1), 36 to 48 (T2), and 60 to 72 (T3) hours of last seen well on a 3T magnetic resonance imaging system. Three-dimensional anatomic, multigradient echo and 2-dimensional diffusion tensor images were obtained. Hematoma and edema volumes were calculated, and the distribution of coagulation was measured by dynamic changes in the susceptibilities and fractional anisotropy within the hematoma. RESULTS: Using a coagulated blood phantom, we demonstrated a linear relationship between the percentage coagulation and susceptibility (R2=0.91) with a positive red blood cell stain of the clot. The quantitative susceptibility maps showed a significant increase in hematoma susceptibility (T1, 0.29±0.04 parts per millions; T2, 0.36±0.04 parts per millions; T3, 0.45±0.04 parts per millions; P<0.0001). A concomitant increase in fractional anisotropy was also observed with time (T1, 0.40±0.02; T2, 0.45±0.02; T3, 0.47±0.02; P<0.05). CONCLUSIONS: This quantitative neuroimaging study of coagulation within the hematoma has the potential to improve patient management, such as safe resumption of anticoagulants, the need for reversal agents, the administration of alteplase to resolve the clot, and the need for surgery.


Assuntos
Acidente Vascular Cerebral Hemorrágico , Acidente Vascular Cerebral , Humanos , Acidente Vascular Cerebral Hemorrágico/complicações , Imagem de Tensor de Difusão , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/complicações , Hemorragia Cerebral/complicações , Imageamento por Ressonância Magnética/métodos , Hematoma/complicações , Coagulação Sanguínea , Hemoglobinas , Fibrina
2.
Stroke ; 55(1): 166-176, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38063014

RESUMO

BACKGROUND: Within hours after intracerebral hemorrhage (ICH) onset, masses of polymorphonuclear neutrophils (PMNs) infiltrate the ICH-affected brain. After degranulation involving controlled release of many toxic antimicrobial molecules, the PMNs undergo rapid apoptosis and then are removed by phagocytic microglia/macrophages (MΦ) through a process called efferocytosis. Effective removal of PMNs may limit secondary brain damage and inflammation; however, the molecular mechanisms governing these cleanup activities are not well understood. We propose that scavenger receptor CD91 on myeloid phagocytes especially in presence of CD91 ligand, LTF (lactoferrin, protein abundant in PMNs), plays an important role in clearance of dead apoptotic PMNs (ANs). METHODS: Mice/rats were subjected to an autologous blood injection model of ICH. Primary cultured microglia were used to assess phagocytosis of ANs. Immunohistochemistry was employed to assess CD91 expression and PMN infiltration. CD91 knockout mice selectively in myeloid phagocytes (Mac-CD91-KO) were used to establish the CD91/LTF function in phagocytosis and in reducing ICH-induced injury, as assessed using behavioral tests, hematoma resolution, and oxidative stress. RESULTS: Masses of PMNs are found in ICH-affected brain, and they contain LTF. MΦ at the outer border of hematoma are densely packed, expressing CD91 and phagocytosing ANs. Microglia deficient in CD91 demonstrate defective phagocytosis of ANs, and mice deficient in CD91 (Mac-CD91-KO) subjected to ICH injury have increased neurological dysfunction that is associated with impaired hematoma resolution (hemoglobin and iron clearance) and elevated oxidative stress. LTF that normally ameliorates ICH injury in CD91-proficient control mice shows reduced therapeutic effects in Mac-CD91-KO mice. CONCLUSIONS: Our study suggests that CD91 plays a beneficial role in improving ANs phagocytosis and ultimately post-ICH outcome and that the beneficial effect of LTF in ICH is in part dependent on presence of CD91 on MΦ.


Assuntos
Lesões Encefálicas , Neutrófilos , Ratos , Camundongos , Animais , Neutrófilos/metabolismo , Lactoferrina/metabolismo , Encéfalo/metabolismo , Hemorragia Cerebral/tratamento farmacológico , Macrófagos/metabolismo , Microglia/metabolismo , Hematoma/tratamento farmacológico
3.
Genes Dis ; 9(1): 108-115, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35005111

RESUMO

Chronic pancreatitis (CP) is a major risk factor of pancreatic ductal adenocarcinoma (PDAC). How CP promotes pancreatic oncogenesis remains unclear. A characteristic feature of PDAC is its prominent desmoplasia in the tumor microenvironment, composed of activated fibroblasts and macrophages. Macrophages can be characterized as M1 or M2, with tumor-inhibiting or -promoting functions, respectively. We reported that Gremlin 1 (GREM1), a key pro-fibrogenic factor, is upregulated in the stroma of CP. The current study aimed to investigate the expression of GREM1 and correlation between GREM1 and macrophages within the pancreas during chronic inflammation and the development of PDAC. By mRNA in situ hybridization, we detected GREM1 mRNA expression within α-smooth muscle actin (SMA)-positive fibroblasts of the pancreatic stroma. These designated FibroblastsGrem1+ marginally increased from CP to pancreatic intraepithelial neoplasia (PanIN) and PDAC. Within PDAC, FibroblastsGrem1+ increased with higher pathological tumor stages and in a majority of PDAC subtypes screened. Additionally, FibroblastsGrem1+ positively correlated with total macrophages (MacCD68+) and M2 macrophages (M2CD163+) in PDAC. To begin exploring potential molecular links between FibroblastsGrem1+ and macrophages in PDAC, we examined the expression of macrophage migration inhibitory factor (MIF), an endogenous counteracting molecule of GREM1 and an M1 macrophage promoting factor. By IHC staining of MIF, we found MIF to be expressed by tumor cells, positively correlated with GREM1; by IHC co-staining, we found MIF to be negatively correlated with M2CD163+ expression. Our findings suggest that GREM1 expression by activated fibroblasts may promote PDAC development, and GREM1/MIF may play an important role in macrophage phenotype.

4.
J Cereb Blood Flow Metab ; 38(3): 375-381, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29292651

RESUMO

Iron released after intracerebral hemorrhage (ICH) is damaging to the brain. Measurement of the content and distribution of iron in the hematoma could predict brain damage. In this study, 16 Yorkshire piglets were subjected to autologous blood injection ICH model and studied longitudinally using quantitative susceptibility mapping and R2* relaxivity MRI on day 1 and 7 post-ICH. Phantom calibration of susceptibility demonstrated (1) iron distribution heterogeneity within the hematoma and (2) natural absorption of iron from 154 ± 78 µg/mL (day 1) to 127 ± 33 µg/mL (day 7). R2* in the hematoma decreased at day 7. This method could be adopted for ICH in humans.


Assuntos
Hemorragia Cerebral/diagnóstico por imagem , Hemorragia Cerebral/metabolismo , Ferro/metabolismo , Neuroimagem/métodos , Animais , Hematoma/diagnóstico por imagem , Hematoma/metabolismo , Imageamento por Ressonância Magnética , Masculino , Imagens de Fantasmas , Sus scrofa , Suínos
5.
J Neurosci ; 35(32): 11281-91, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26269636

RESUMO

After ischemic stroke, various damage-associated molecules are released from the ischemic core and diffuse to the ischemic penumbra, activating microglia and promoting proinflammatory responses that may cause damage to the local tissue. Here we demonstrate using in vivo and in vitro models that, during sublethal ischemia, local neurons rapidly produce interleukin-4 (IL-4), a cytokine with potent anti-inflammatory properties. One such anti-inflammatory property includes its ability to polarize macrophages away from a proinflammatory M1 phenotype to a "healing" M2 phenotype. Using an IL-4 reporter mouse, we demonstrated that IL-4 expression was induced preferentially in neurons in the ischemic penumbra but not in the ischemic core or in brain regions that were spared from ischemia. When added to cultured microglia, IL-4 was able to induce expression of genes typifying the M2 phenotype and peroxisome proliferator activated receptor γ (PPARγ) activation. IL-4 also enhanced expression of the IL-4 receptor on microglia, facilitating a "feedforward" increase in (1) their expression of trophic factors and (2) PPARγ-dependent phagocytosis of apoptotic neurons. Parenteral administration of IL-4 resulted in augmented brain expression of M2- and PPARγ-related genes. Furthermore, IL-4 and PPARγ agonist administration improved functional recovery in a clinically relevant mouse stroke model, even if administered 24 h after the onset of ischemia. We propose that IL-4 is secreted by ischemic neurons as an endogenous defense mechanism, playing a vital role in the regulation of brain cleanup and repair after stroke. Modulation of IL-4 and its associated pathways could represent a potential target for ischemic stroke treatment. SIGNIFICANCE STATEMENT: Depending on the activation signal, microglia/macrophages (MΦ) can behave as "healing" (M2) or "harmful" (M1). In response to ischemia, damaged/necrotic brain cells discharge factors that polarize MΦ to a M1-like phenotype. This polarization emerges early after stroke and persists for days to weeks, driving secondary brain injury via proinflammatory mediators and oxidative damage. Our study demonstrates that, to offset this M1-like polarization process, sublethally ischemic neurons may instead secrete a potent M2 polarizing cytokine, interleukin-4 (IL-4). In the presence of IL-4 (including when IL-4 is administered exogenously), MΦ become more effective in the cleanup of ischemic debris and produce trophic factors that may promote brain repair. We propose that IL-4 could represent a potential target for ischemic stroke treatment/recovery.


Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Interleucina-4/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Interleucina-4/genética , Interleucina-4/farmacologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/patologia , Neurônios/patologia , PPAR gama/metabolismo , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Acidente Vascular Cerebral/patologia
6.
Mol Cancer Ther ; 12(11): 2494-504, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23990113

RESUMO

Mantle cell lymphoma (MCL) remains incurable due to its inevitable pattern of relapse after treatment with current existing therapies. However, the promise of a cure for MCL lies in the burgeoning area of novel agents. In this study, we elucidated the therapeutic effect and mechanism of carfilzomib, a novel long-acting second-generation proteasome inhibitor, in MCL cells. We found that carfilzomib induced growth inhibition and apoptosis in both established MCL cell lines and freshly isolated primary MCL cells in a dose-dependent manner. In contrast, carfilzomib was less toxic to normal peripheral blood mononuclear cells from healthy individuals. The carfilzomib-induced apoptosis of MCL cells was mediated by the activation of JNK, Bcl-2, and mitochondria-related pathways. In addition, carfilzomib inhibited the growth and survival signaling pathways NF-κB and STAT3. Interestingly, we discovered that expression of immunoproteasome (i-proteasome) subunits is required for the anti-MCL activity of carfilzomib in MCL cells. In MCL-bearing SCID mice/primary MCL-bearing SCID-hu mice, intravenous administration of 5 mg/kg carfilzomib on days 1 and 2 for 5 weeks slowed/abrogated tumor growth and significantly prolonged survival. Our preclinical data show that carfilzomib is a promising, potentially less toxic treatment for MCL. Furthermore, an intact i-proteasome, especially LMP2, appears to be necessary for its anti-MCL activity, suggesting that i-proteasome could serve as a biomarker for identifying patients who will benefit from carfilzomib.


Assuntos
Antineoplásicos/uso terapêutico , Linfoma de Célula do Manto/tratamento farmacológico , Terapia de Alvo Molecular/métodos , Oligopeptídeos/uso terapêutico , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Humanos , Linfoma de Célula do Manto/patologia , Masculino , Camundongos , Camundongos SCID , Mitocôndrias/metabolismo , Oligopeptídeos/farmacologia , Complexo de Endopeptidases do Proteassoma/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
7.
Stroke ; 40(3 Suppl): S92-4, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19064796

RESUMO

No effective therapy is available for treating intracerebral hemorrhage (ICH). One of several key components of brain damage after ICH is the neurotoxicity of blood products. Within hours to days after ICH, extravasated erythrocytes in the hematoma undergo lysis, releasing cytotoxic hemoglobin, heme, and iron, thereby initiating secondary processes, which negatively influence the viability of cells surrounding the hematoma. To offset this process, phagocytic cells, including the brain's microglia and hematogenous macrophages, phagocytose and then process extravasated erythrocytes before lysis and subsequent toxicity occurs. Therefore, we hypothesize that a treatment that stimulates phagocytosis will lead to faster removal of blood from the ICH-affected brain, thus limiting/preventing hemolysis from occurring. CD36 is a well-recognized integral microglia/macrophage cell membrane protein known to mediate phagocytosis of damaged, apoptotic, or senescent cells, including erythrocytes. CD36 and catalase expression are regulated by peroxisome proliferator activated receptor-gamma agonists (eg, rosiglitazone). We demonstrate that peroxisome proliferator activated receptor-gamma agonist-induced upregulation of CD36 in macrophages enhances the ability of microglia to phagocytose red blood cells (in vitro assay), helps to improve hematoma resolution, and reduces ICH-induced deficit in a mouse model of ICH. The beneficial role of peroxisome proliferator activated receptor-gamma-induced catalase expression in the context of phagocytosis is also discussed. Proxisome proliferator activated receptor-gamma agonists could represent a potential treatment strategy for treatment of ICH.


Assuntos
Hemorragia Cerebral/complicações , Hematoma/tratamento farmacológico , Hematoma/etiologia , Macrófagos/fisiologia , Microglia/fisiologia , Animais , Apoptose/fisiologia , Antígenos CD36/metabolismo , Catalase/metabolismo , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , Modelos Animais de Doenças , Eritrócitos/patologia , Hematoma/metabolismo , Humanos , Camundongos , PPAR gama/agonistas , Fagocitose/fisiologia , Rosiglitazona , Tiazolidinedionas/uso terapêutico
8.
Ann Neurol ; 61(4): 352-62, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17457822

RESUMO

OBJECTIVE: Phagocytosis is necessary to eliminate the hematoma after intracerebral hemorrhage (ICH); however, release of proinflammatory mediators and free radicals during phagocyte activation is toxic to neighboring cells, leading to secondary brain injury. Promotion of phagocytosis in a timely and efficient manner may limit the toxic effects of persistent blood products on surrounding tissue and may be important for recovery after ICH. METHODS: Intrastriatal blood injection in rodents and primary microglia in culture exposed to red blood cells were used to model ICH and to study mechanisms of hematoma resolution and phagocytosis regulation by peroxisome proliferator-activated receptor gamma (PPARgamma) in microglia/macrophages. RESULTS: Our study demonstrated that the PPARgamma agonist, rosiglitazone, promoted hematoma resolution, decreased neuronal damage, and improved functional recovery in a mouse ICH model. Microglia isolated from murine brains showed more efficient phagocytosis in response to PPARgamma activators. PPARgamma activators significantly increased PPARgamma-regulated gene (catalase and CD36) expression, whereas reducing proinflammatory gene (tumor necrosis factor-alpha, interleukin-1beta, matrix metalloproteinase-9, and inducible nitric oxide synthase) expression, extracellular H(2)O(2) level, and neuronal damage. Phagocytosis by microglia was significantly inhibited by PPARgamma gene knockdown or neutralizing anti-CD36 antibody, whereas it was enhanced by exogenous catalase. INTERPRETATION: PPARgamma in macrophages acts as an important factor in promoting hematoma absorption and protecting other brain cells from ICH-induced damage.


Assuntos
Hemorragia Cerebral/patologia , Hematoma/metabolismo , Microglia/metabolismo , PPAR gama/metabolismo , Animais , Animais Recém-Nascidos , Antígenos CD36/metabolismo , Células Cultivadas , Hemorragia Cerebral/complicações , Citocinas/efeitos dos fármacos , Modelos Animais de Doenças , Ativadores de Enzimas/administração & dosagem , Eritrócitos/efeitos dos fármacos , Eritrócitos/fisiologia , Hematoma/tratamento farmacológico , Hematoma/etiologia , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Fagocitose/efeitos dos fármacos , Fagocitose/fisiologia , Prostaglandina D2/administração & dosagem , Prostaglandina D2/análogos & derivados , Índice de Gravidade de Doença , Fatores de Tempo
9.
Neurocrit Care ; 3(1): 71-6, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16159102

RESUMO

INTRODUCTION: Neurotrophins can protect against apoptotic death following neuronal injury. In a previous article, we showed that activation of the trk receptor is required, but the subsequent mechanisms of action remain unclear. Because the caspase family of cysteine proteases plays a central role in the apoptotic process, we examined the effect of the neurotrophins on caspase activation. MATERIALS AND METHODS: Primary neuronal cultures from the embryonic rat cortex were injured with radiation, oxygen deprivation, or oxygen-glucose deprivation. Neurons were treated with brain-derived growth factor (BDNF) or caspase inhibitors. The level of injury was assayed by measuring lactate dehydrogenase release. Western blots were used to note the presence and activation of the caspases 1, 2, 3, 8, and 9--with and without treatment with BDNF. RESULTS: Proenzymes for caspases 1, 2, and 3--but not for caspases 8 or 9 were expressed. With radiation or oxygen deprivation, but not oxygen-glucose deprivation, caspase 3 was activated. Treatment with BDNF was protective against radiation and oxygen deprivation only. Treatment with BDNF also blocked the activation of caspase 3. A similar effect was achieved by directly blocking caspase 1 or 3 activation using an inhibitor. CONCLUSIONS: In this study, we showed that BDNF treatment inhibits caspase 3 activation following neuronal injury. This is a central event: when injury did not lead to caspase 3 activation, BDNF treatment was not protective. These results suggest one mechanism by which the neurotrophins protect neurons following injury.


Assuntos
Lesões Encefálicas/prevenção & controle , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Inibidores de Caspase , Córtex Cerebral/lesões , Inibidores de Cisteína Proteinase/farmacologia , Animais , Córtex Cerebral/embriologia , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Gravidez , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA